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As shown in [1-5], an s-type laminar-turbulent transition universally takes place in a 
boundary layer for initially small, intense disturbances in the layer. The salient features 
of this regime are explained within the framework of nonlinear stability theory [6]. The 
mechanism of resonant interaction of Tollmien-Schlichting waves (TS) plays a leading role, 
which in the initial stages leads to selection of a pair of three-dimensional waves from 
the background pulsations [7]. The parameters of the latter [frequency ~ and wave vectors 
(=, • correspond to the maximum rate of parametric amplification in the field of the in- 
troduced two-dimensional TS disturbance with m0 = 2~ and (~0, 0). The selected s~nranetric 
triad forms the fundamental structure of the s-transition. When the intensities of the tri- 
ad components are equalized, the parametric stage is transformed to a nonlinear stage, in 
which there is explosive amplification of all interacting waves. According to experiments 
[2, 4, 5], approach to the explosive regime is accompanied by rapid broadening of the low- 
frequency (LF) part of the spectrum of spatial pulsations. Below we note the stabilization 
of the amplitude level and transition to turbulent motion. 

We know from the theory of nonlinear systems that there is a close relation between 
the processes leading to stochastic behavior and the mechanism of spectrum filling during 
bounded growth of oscillations. It has been proposed that such processes can be realized 
in the boundary layer as a consequence of a resonant cascade transfer of energy along the 
spectrum in the region of strongly dissipating, "essentially" three-dimensional LF waves. 

In this work, we study the possibility and consequences of resonant cascade transforma- 
tion of the spectrum. The mechanism of spectrum filling is analyzed in comparison with ex- 
periments. 

We examine a cascade process of excitation of background pulsations m n = m0/2 n (n = i, 
2, ...) in a field of a given frequency m0. The model includes a system of waves: induced 
plane waves with parameters (~0, a0, 0) of amplitude A0, a pair of symmetric subharmonic 
waves (m0/2, ~i, • At, and two pairs of secondary subharmonics (m0/4, a2, • A2 and 
(m0/4, ~3, • As. The perturbation of the velocity field of the flow gu = g(u~, u=, u s) 
can be represented as 

u (x, y ,  z ,  t) = ~ B j u j  e x p  i0j (x ,  z,  t) q- e ~  (x ,  g,  z ,  t) ,  
j=0  

where @j__- --~0fl + ~jz + ] ~jdx, uj(y) ~0~y< ( maL IuJl = i) and the dispersion relation mj + iTj = ~(aj, 

8j) are determined by the local-parallel Orr-Sommerfeld problem [8]; ~ is a function quasi- 

periodic in (x, z, t); and the parameter e << i. Under conditions of steady-state and trans- 

verse uniformity, the system of equations for complex amplitude Aj = BjeYJ t takes the form 

--i .6, dx 

( v l d / d x  " ? J  A I  = o o a o ~ l e  + c.la2e + C2a3e q- C3a2a3e , , 

o ~ * ~]hl 2 dx r~ _ �9 {~Aadx 
(v2 .ad /dx  - -  ?2,3 - -  iw2,3~2,a) az,a = 02,3Ala2,3e  ' ~- z22,3Alaa,2e , 

Here 62, s = ~i/2 - 82,s; A0 = ~0 - 2~i; bl = ~z - 2~2; A2 = ~z - 2~s; Au = al - a2 - ~s; and 
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the following substitution has been made A2,a = a2,aei62, az. The coefficients v, w, S, C, and 
D are constructed from the solution of homogeneous and inhomogeneous Orr-Sommerfeld equations 
for the Blasius profile [6]. 

We study the behavior of (i) for var/~us-~i,~:~!~ing ~hi:eh! ~l:is Qhos@D fr0m the re- 
gion of maximum parametric increments (~z/az = 2) [7"]~ ~Fl'~hre~l shows the e~olUtion of .... 

IAj (Re) 1 (here and below, the curve number corresponds to the index of the wave) for F0 = 

moRe = 122"10 -s, b2 = (82/Re)'103 = 0.217, b a = 0.254. Re is determined according to the 
displacement thickness. We observed parametric growth in the first m0/2 and second ~0/4 sub- 
harmonics. In this case, the second subharmonic lies outside synchronization with the two- 
dimensional TS wave frequency m0, and is pumped by the three-dimensional wave ~0/2. In the 
Re range considered, the waves of frequencies o~ n (n > i) lie in the zone of linear damping. 
The decrement grows with increasing n. This leads to the appearance of the threshold char- 
acter of LF-wave pumping: the wave frequency 0~n+ I is parametrically increased only after 
the amplitude of the n-th wave exceeds the threshold value. As shown by calculations, the 
ratio (~/a)2,3 grows with increasing n, which corresponds to the maximum parametric incre- 
ment (curves 2 and 3 correspond to $2/~2 = 2.8, Sa/~a = 3.44 at the initial point). 

Thus, a cascade process occurs, with sequential excitation of all "more than three- 
dimensional" subharmonics. The interaction is of an explosive nature, with synchronization 
of  phases  (~i = arg Aj) ~ = ~ 0 - - 2 ~ + ~ A ~ d x ,  Cz = ~--2~2+;A~dx, r = ~ - - 2 %  + ~Asdx(Fig.  2, 

cu rves  1 - 3 ) .  Growth s t a b i l i z a t i o n  in  t he  cascade  p r o c e s s  does no t  t ake  p l a c e .  

The s c e n a r i o  f o r  t r a n s i t i o n  t o  t u r b u l e n c e  in  a boundary l a y e r  by p e r i o d  doub l ing  i s  ob- 
s e r v e d  in  t h e  e x p e r i m e n t s  of  [ 5 ] .  In  t h a t  work, s e q u e n t i a l  e x c i t a t i o n  of  t h r e e  subharmonics  
~0 /2 ,  w0/4, ~0/8 i s  o b s e r v e d ,  w i t h  b roaden ing  and f i l l i n g  o f  t he  LF band of  t h e  spec t rum and 
i t s  subsequen t  t r a n s f o r m a t i o n  to  a cont inuum. Broadening  and f i l l i n g  of  t he  LF spec t rum can 
t a k e  p l a c e  as a consequence  o f  p a r a m e t r i c  i n t e r a c t i o n  in  asymmetr ic  t r i p l e t s ,  where e~,z 
~0 /2 .  A p a r t i c u l a r l y  e f f e c t i v e  i n t e r a c t i o n  i s  p r e s e r v e d  du r ing  s y n c h r o n i z a t i o n  of  t h e  f r e -  
q u e n c i e s  ~ +  ~ = ~0. Examples o f  i n t e r a c t i o n s  in  such c o n f i g u r a t i o n s ,  when t h e y  dominate  
the structure of the perturbation field are given in [9]. We will dwell on this in more de- 
tail. 
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We study the dependence of the increments of LF-perturbation growth ah.~ = i-~h,17-- d---~-- 

on the frequency parameters e k and ~l. For convenience, we introduce the quantities • = 

~ ~ which characterize the frequency wave selection from the subharmonic triplet. The 
o0/2 

model includes the fundamental wave (e0, s 0, 0) and three-dimensional pairs of waves (el, 
~i, • (e2, ~2, • of background intensity, where el, 2 = (e0/2)(l - ~). The system of 
amplitude equations in this case (m = 5), which takes into account cross couplings, is given 
in [9]. For fixed e 0 and [~I, the increments ~1,2 depend on the initial amplitude of the 

pumping wave IA0(Re0)I and the parameters 61, 62- Calculations of the increments ~1,2 for 
various orientations of the wave vectors (6/~)I,2 show that in analogy with the subharmonic 
triplet [7]~ the increment ~1,2 has a maximum at certain (61 +, 62+): Om(IA01, ~) = oi,2(61 +, 

82 +, IA01, ~). The dependence ~m(g)/am(0) is shown in Fig. 3 for IA0(ReII)I = 0.67; 0.bZ~ 

and F 0 = 115.10 -6 (curves 1 and 2, Reil is the Reynolds number on the upper branch of the 
neutral stability curve). For fixed IA0(RelI)l, the maximum increment Om(0) corresponds to 

symmetric subharmonics, and for ~ # 0, it slowly decreases with increasing wave selection ~. 
A perturbation of lower frequency (~ > 0) has a large increment. The width of the frequency 
band being effectively excited increases with growing intensity of the pumping wave IA0(Rell)l. 
We can conclude that a large resonance width is capable of exciting resonant frequencies over 
a broad range of the spectrum. 

These results make it possible to interpret the experimental data of [i0~, where waves 
were excited in a plate boundary layer. These consisted of a two-dimensional wave of fre ~ 
quency e 0 and a pair of symmetric three-dimensional waves of frequency e I < e0 (F0 = 88"10 -~, 
F I = 39.5-10 -6) with initial intensity on the order of 0.1%. A wide selection of LF spatial 
modes is observed downstream, whose intensity level reaches the induced levels. In addition 
to the induced waves e 0 and el, the waves of frequencies 2e I and e 0 - e~ also dominate in 
the initial stage. The transformation of the initially two-dimensional waves of frequency 
2e I to a three-dimensional wave in the region Re z Reii is notable. It has been established 

that LF spatial modes are found in synchronization with the dominant modes e I and 2ei. The 
latter are the main conveyers of energy to the low frequencies, as asserted by [10]. 

We can explain the experimental results within the framework of the representation de- 
veloped above. According to this, the introduction of the plane oscillation of frequency 
e0 and the three-dimensional one of frequency e I < e 0 first of all leads to the selection of 
resonant spatial modes e 7 = ~0/2, e3 = eo -- el from the background source oscillations. The 
plane mode e 2 = 2e I is also selected, as a consequence of the nonlinear interaction in the 
symmetric triplet (el, ~i, 61) + (el, ~i, -61) = (2ei, ~2, 0). This establishes the start of 
the process of cascading excitation of resonant frequencies e 4 = e 2 - e3, es = e0- e4, e6 = 
e2 - ~5, and so on. 

The results of calculating the amplitudes of the corresponding multi-wave system are 
shown in Fig. 4. Comparison with experiment [10] confirms the validity of the proposed mod- 
el. In the initial stage Re ~ 1250, the modes with frequencies e0, el, e2, and ~s dominate. 
The intensities IAal, IAsl of the waves being resonantly excited (of frequency e2, es) in 
this region of the background are practically unrelated to their initial values (IAa(x0)l, 

IAs(x0)l) ~ i0 -~. In the region Re ~ 1350, the intensities IAjl of the excited waves at 

frequencies ej (j = 4-6) reach the induced level and coincide with those obtained in the ex- 

periment. The intensity of the subharmonic (j = 7) is significantly less, which also agrees 
with the data from [i0]. 

We emphasize that the experimental discovery of decreasing growth rate of the oscilla- 
tions with increasing frequency separation ~0 - ~i is in complete agreement with t]he idea 
that maximum interaction takes place in the subharmonic (symmetric) triads (see Fig. 3) [7]. 
Under conditions of pair interactions, the growth rate of beats is determined by the indi- 
vidual parameters of the coupled waves. Note that this model is concerned with resonant ex- 
citation of characteristic TS wave disturbances. In the case of resonance, the generation 
of oscillation ~n (n-th cascade level) is not accompanied by an increase in the order of the 
interaction: A(e n) ~ cA. At the same time, for nonlinear harmonics (beats)~ the order must 
grow together with increasing n: A(~ n) ~ (cA) n (n ~ 2), which is not observed in [10]. 
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The potentially competitive contribution of "nonresonant" oscillations in the perturba- 
tion spectrum can be introduced only through beats of the initial waves (~0, ~I), described 
by the function �9 in the quadratic order of the theory. The behavior of the amplitude of 
noncharacteristic three-dimensional waves (2mi, 2~i, • is shown by the broken line in 
Fig. 4. Obviously, in the region Re ~ 1350, this three-dimensional wave exceeds the inten- 
sity of the plane wave of frequency 2mi (curve 2), which explains the results of [I0]. 

Calculations show that the two-dimensional wave of frequency 2m I plays an important role 
in the process of energy transfer to low frequencies. In our model, all LF waves are para- 
metrically coupled to the two plane waves m0 and ml. As is evident from the behavior of the 
phases in Fig. 5, the coupling with ~2 is decisive. The phases ~ s  : ~2 --2~I, ~ 4  : ~2--~3-- 
@4, ~5 = @2--@5--~6 (curves 3-5) demonstrate the nonlinear synchronization of LF perturba- 
tions with the phase ~ (phase localization). This is in contrast to the behavior of the 
phases ~i = @0--@3--@6, ~ = ~0 --@4--~5 (curves i, 2), where such synchronization with ~0 
is not observed. The special role of the wave of frequency m2 is emphasized in [i0]. 

The character of the curves in Fig. 4 indicates that stabilization of amplitude growth 
does not take place in the process of energy transfer to low frequencies. The excitation of 
subsequent oscillations ~n only weakly affects the behavior of waves of frequency ~n-1. 
This makes it possible to consider the behavior of the curves as invariant with respect to 
subsequent increase in the cascade level. 

Our work shows that within the framework of weakly nonlinear theory, the process of 
spectrum filling, which precedes transition, can be explained. With growing intensity, 
there occurs both resonant excitation of low frequencies and generation of high-frequency 
spatial harmonics [ii]. However, this process does not directly lead to stochastic motion, 
since the growth in intensity preserves the phase synchronization of the perturbations. The 
stabilization mechanism of the latter evidently is brought about primarily by the nonlinear 
generation of higher harmonics, and the transport and dissipation of energy in the high- 
frequency part of the spectrum. 
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